Transferability of Models for Estimating Paddy Rice Biomass from Spatial Plant Height Data
نویسندگان
چکیده
It is known that plant height is a suitable parameter for estimating crop biomass. The aim of this study was to confirm the validity of spatial plant height data, which is derived from terrestrial laser scanning (TLS), as a non-destructive estimator for biomass of paddy rice on the field scale. Beyond that, the spatial and temporal transferability of established biomass regression models were investigated to prove the robustness of the method and evaluate the suitability of linear and exponential functions. In each growing season of two years, three campaigns were carried out on a field experiment and on a farmer’s conventionally managed field. Crop surface models (CSMs) were generated from the TLS-derived point clouds for calculating plant height with a very high spatial resolution of 1 cm. High coefficients of determination between CSM-derived and manually measured plant heights (R2: 0.72 to 0.91) confirm the applicability of the approach. Yearly averaged differences between the measurements were ~7% and ~9%. Biomass regression models were established from the field experiment data sets, based on strong coefficients of determination between plant height and dry biomass (R2: 0.66 to 0.86 and 0.65 to 0.84 for linear and exponential models, respectively). The spatial and temporal transferability of the models to OPEN ACCESS Agriculture 2015, 5 539 the farmer’s conventionally managed fields is supported by strong coefficients of determination between estimated and measured values (R2: 0.60 to 0.90 and 0.56 to 0.85 for linear and exponential models, respectively). Hence, the suitability of TLS-derived spatial plant height as a non-destructive estimator for biomass of paddy rice on the field scale was verified and the transferability demonstrated.
منابع مشابه
Estimation of rice growth parameters by X-band radar backscattering data
Microwave remote sensing has great potential, especially in monsoon Asia, since optical observations are often hampered by cloudy conditions. The radar backscattering characteristics of rice crop were investigated with a ground-based automatic scatterometer system. The system was installed inside a shelter in an experimental paddy field at the National Institute of Agricultural Science and Tech...
متن کاملDetermine the most suitable Allometric equations for Estimating Above-ground Biomass of the Juniperus excelsa
Today, modeling and determination of allometric equations of forest trees, especially Junipers trees, are very important for determination of biological status and carbon storage capacity of forest species. The aim of this study was to determine the most suitable allometric equations for estimating the biomass of leaf, sub branch, main branch, trunk, and biomass of total Juniperus excelsa tr...
متن کاملNon-destructive Method for Estimating Biomass of Plants Using Digital Camera Images
Abstract Plant growth and biomass assessments are required in production and research. Such assessments are followed by major decisions (e.g., harvest timing) that channel resources and influence outcomes. In research, resources required to assess crop status affect other aspects of experimentation and, therefore, discovery. Destructive harvests are important because they influence treatment s...
متن کاملEstimating biomass of individual pine trees using airborne lidar
Airborne lidar (Light Detection And Ranging) is a proven technology that can be used to accurately assess aboveground forest biomass and bio-energy feedstocks. The overall goal of this study was to develop a method for assessing aboveground biomass and component biomass for individual trees using airborne lidar data in forest settings typical for loblolly pine stands (Pinus taeda L.) in the sou...
متن کاملComparison of Geographically Weighted Regression and Regression Kriging to Estimate the Spatial Distribution of Aboveground Biomass of Zagros Forests
Aboveground biomass (AGB) of forests is an essential component of the global carbon cycle. Mapping above-ground biomass is important for estimating CO2 emissions, and planning and monitoring of forests and ecosystem productivity. Remote sensing provides wide observations to monitor forest coverage, the Landsat 8 mission provides valuable opportunities for quantifying the distribution of above-g...
متن کامل